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Abstract 

Interstation observations of daily precipitation are often temporally misaligned due to differences 

in station time of observation. Several time of observation adjustment methods have historically 

been applied to improve interstation temporal alignment, but the efficacy of such adjustments has 

not been fully tested. Here, we examine the ability of several time of observation adjustments to 

improve observation compatibility under three different adjustment scenarios: adjusting morning 

observations to midnight, adjusting afternoon observations to midnight, and adjusting afternoon 

observations to morning. We find that all adjustment methods provide necessary improvements 

to the temporal alignment of daily precipitation observations, especially with respect to morning 

versus midnight time of observation totals. However, for a majority of the adjustments, improved 

temporal alignment comes at the cost of significantly altering observed precipitation intensity, 

frequency, and extremes. We also find adjustments have the potential to overcorrect and increase 

both general and extreme event spatiotemporal coherence. 

1 Introduction  

Rain gauge-based observations of daily precipitation are a key input for a broad range of 

hydrological and environmental analyses. Due to operational requirements and reporting 

practices, daily precipitation observations from various stations and networks often have 

different times of observation. Station time of observation is the ending accumulation time of the 

24-hour period for a reported daily precipitation total. For instance, a daily total with a 0700 LT 

observation time (i.e. 7:00 am local time) is the total from 0700 LT on the previous day to 0700 
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LT on the reporting day. Time of observation inconsistencies cause interstation temporal 

misalignment in reported daily precipitation totals. This misalignment affects interstation data 

compatibility thus limiting the applicability of gauge-based observations for spatiotemporal 

analyses and the development of gridded products (Hopkinson et al., 2011).  

Time of observation inconsistencies are a well-known issue, but the efficacy of different 

adjustment methods has not been fully tested. Time of adjustment methods have ranged from 

shifting morning observation precipitation back a calendar day (Holder et al., 2006) to 

disaggregating daily precipitation totals to hourly and then aggregating back to a different daily 

observation time (Holder et al., 2006; Kim and Pachepsky, 2010; Maurer et al., 2002). 

Disaggregation can be performed using actual hourly observations (Holder et al., 2006) or under 

the assumption that a daily total is distributed uniformly across all hours in a 24-hour period 

(Kim and Pachepsky, 2010; Maurer et al., 2002). While time of observation adjustment methods 

have been shown to improve interstation temporal correlations (Holder et al., 2006; Kim and 

Pachepsky, 2010), such adjustments have only been tested under the context of adjusting 

morning observations to midnight and it is unclear how effective they are under different 

adjustment scenarios (e.g. afternoon to morning). Additionally, it is unknown how time of 

observation adjustments impact observed precipitation summary statistics (e.g. average intensity) 

and the coherence of interstation precipitation observations in both space and time. The objective 

of this study is to determine the scenario-specific effects of time observation adjustments on (1) 
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the temporal alignment of daily precipitation time series with different observation times; (2) 

observed precipitation statistics; and (3) interstation spatiotemporal coherence.  

2 Materials and Methods 

2.1 Time of Observation Adjustment Methods 

 We examine three time of observation adjustment methods: the 1-day shift method of 

Holder et al. (2006), disaggregation-reaggregation under the uniform distribution assumption 

(Kim and Pachepsky, 2010; Maurer et al., 2002), and disaggregation-reaggregation with hourly 

observations from a gridded dataset.   

2.1.1 Shift Method 

 The shift adjustment method shifts all daily totals with a morning observation time back 

one calendar day to better conform them with midnight-to-midnight and afternoon/evening 

observation times. The shift method assumes that, because a majority of the 24-hour period for a 

morning observation time is actually in the previous calendar day (Figure 1), a simple backward 

shift of the daily totals will improve temporal alignment with midnight-to-midnight totals 

(Holder et al., 2006). The shift method can also be applied in reverse where midnight-to-

midnight and afternoon/evening observation totals are shifted forward one calendar day to 

improve alignment with morning observation times.  
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2.1.2 Uniform Method 

To adjust a reported precipitation total for a specific date to a different time of 

observation, the uniform assumption disaggregation-aggregation method reapportions reported 

daily totals from a three-day moving window surrounding the target date: 

𝑃𝑑𝑡 = (𝑃𝑑−1 ⋅ 𝐹𝑑−1) + (𝑃𝑑 ⋅ 𝐹𝑑)+ (𝑃𝑑+1 ⋅ 𝐹𝑑+1)  (1) 

where 𝑃𝑑𝑡 is the adjusted estimate for the target time of observation on target date, d; 𝑃𝑑−1,  𝑃𝑑, 

and 𝑃𝑑+1 are the original reported daily totals for the previous, target, and next dates, 

respectively; and 𝐹𝑑−1, 𝐹𝑑, and 𝐹𝑑+1 are the fractions of  𝑃𝑑−1,  𝑃𝑑, and 𝑃𝑑+1, respectively, to 

include in the estimate of  𝑃𝑑𝑡. Because the uniform method assumes that a reported daily total is 

distributed uniformly across all hours within its respective 24 hour period,  𝐹𝑑−1,  𝐹𝑑, and 𝐹𝑑+1 

are determined directly by the number of hours of overlap between the 24-hour periods 

represented by 𝑃𝑑−1,  𝑃𝑑, and 𝑃𝑑+1, and the new 𝑃𝑑𝑡 (Figure 1).  

2.1.3 Hourly Method 

The hourly time of observation method also uses equation (1) to estimate midnight-to-

midnight precipitation totals. In contrast to the uniform method, the hourly method does not just 

use overlapping hours to determine static values for 𝐹𝑑−1, 𝐹𝑑 and 𝐹𝑑+1. Instead, the three 

𝐹values are daily varying and based on both overlapping hours and corresponding hourly 

precipitation observations. First, hourly observations are aggregated to the 24-hour time periods 

defined by the original time of observation. Second, the hourly observations are divided by their 
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corresponding 24-hour aggregations to produce hourly fraction values that represent the fraction 

of the 24-hour totals that fell in each hour. Values for 𝐹𝑑−1, 𝐹𝑑 and 𝐹𝑑+1are then the sum of 

hourly fractions for the corresponding hours of overlap between 𝑃𝑑−1, 𝑃𝑑, and 𝑃𝑑+1, and the new 

𝑃𝑑𝑡 (Figure 1). If hourly observations have direct correspondence with the daily totals, the hourly 

method will result in a perfect correction.  

Because hourly observations must be available at the station being adjusted or from a 

neighboring station, the hourly method does not have wide applicability. To address this 

limitation, we examine the application of hourly precipitation data from the North American 

Land Data Assimilation System Phase 2 (NLDAS-2; Xia et al., 2012). NLDAS-2 provides 1/8th 

degree resolution (~12 km) hourly precipitation from 1979 to present for a region surrounding 

the conterminous U.S. NLDAS-2 daily precipitation is derived from a topographically adjusted 

(Daly et al., 2008) version of the Climate Prediction Center (CPC) unified daily gauge analysis 

(Chen et al., 2008). To obtain hourly precipitation totals, NLDAS-2 temporally disaggregates the 

CPC-derived daily totals using one of four different hourly datasets dependent on data 

availability and the following priority order: hourly radar observations (Lin and Mitchell, 2005), 

microwave satellite observations (Joyce et al., 2004), gridded hourly gauge-based observations 

(Higgins et al., 1996), and reanalysis (Mesinger et al., 2006). The disaggregation data source 

used for a specific day and grid cell is not available in the NLDAS-2 metadata, but hourly gauge-

based data are mainly used from 1979 to July 1996 and hourly radar observations from July 1996 

to present (Ferguson and Mocko, 2017). Because temporal inconsistencies in NLDAS-2 have 
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been associated with the switchover from gauge to radar-based disaggregation (Ferguson and 

Mocko, 2017), we focus our use of NLDAS-2 on the period of radar-based disaggregation from 

1997 to present. When applying the hourly adjustment to a station, we extract NLDAS-2 hourly 

precipitation from the closest grid cell to the station location. 

2.2 Validation 

2.2.1 Overview 

We validate the adjustment methods in three main areas: temporal alignment, summary 

precipitation statistics, and spatiotemporal coherence. For temporal alignment, we examine how 

well the different adjustment methods improve alignment between daily precipitation time series 

with different observation times. In the second validation, we analyze if and by how much the 

adjustments modify observed precipitation statistics like average precipitation amount and 

intensity. An effective adjustment should not only improve temporal alignment, but produce a 

daily precipitation time series whose summary precipitation statistics are similar to those of the 

target time of observation time series.      Lastly, we examine how the adjustments modify 

interstation spatiotemporal coherence. A reliable adjustment method should modify station time 

series with disparate times of observation, so that, when viewed as whole, they better represent 

the true spatiotemporal coherence of the precipitation field. In all analyses, we validate the 

adjustment methods in a region surrounding the U.S. Mid-Atlantic (32.0° to 45.25°N; 71.4° to 

84.0°W; Figure 2) under three different adjustment scenarios: (1) adjustment of daily 
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precipitation from a morning to midnight-to-midnight observation time (AM’ midnight); (2) 

adjustment of daily precipitation from an afternoon to midnight-to-midnight observation time 

(PM’ midnight); and (3) adjustment of daily precipitation from an afternoon to morning 

observation time (PM’ AM).  

2.2.2 Temporal Alignment 

To validate temporal alignment, we use high-quality 2006 to 2015 hourly precipitation 

observations from U.S. Climate Reference Network (USCRN) stations (Diamond et al., 2013) 

within the U.S. Mid-Atlantic spatial domain (n=15; Figure 2a) . The Mid-Atlantic USCRN 

stations are spatially sparse, but allow for the straightforward creation of co-located daily time 

series with different times of observation. For each USCRN station, we create three 2006 to 2015 

time series of daily 24-hour aggregated precipitation totals to encompass the AM’ midnight, 

PM’ midnight, and AM’ PM adjustment scenarios: midnight-to-midnight aggregations, 0700-

to-0700 LT aggregations, and 1700-to-1700 LT aggregations. We select 0700 and 1700 LT to 

represent AM and PM observations, respectively, because they are the most common morning 

and afternoon observation times used historically. To examine impacts on temporal alignment, 

we compare the Pearson correlation coefficient (r), Heidke skill score (HSS), and normalized 

mean absolute error (NMAE) between the three daily time series at each station both before and 

after adjustment. Here, we define NMAE as the ratio of mean absolute error to mean daily 

precipitation. We use r and NMAE to quantify temporal alignment of daily precipitation amounts 

and HSS to quantify alignment of precipitation occurrence. 
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We also validate temporal alignment with the tail dependence measure, 𝜒 (Coles et al., 

1999). In contrast to r, which quantifies the correlation of two station time series across their 

entire joint distribution, 𝜒 quantifies dependence in the tail of their joint distribution above a set 

quantile, u (Weller et al., 2012). As such, 𝜒 allows for examination of how the time of 

observation adjustments affect the temporal alignment of extreme events. Under a common 

marginal assumption, for two X and Y time series, 𝜒 at quantile u is defined as: 

𝜒(𝑢)  = 𝑃(𝑌 >  𝑢 | 𝑋 >  𝑢) (2) 

We calculate 𝜒 using the R (R Core Team, 2016) extRemes package (Gilleland and Katz, 2016), 

which uses the 𝜒 formulation of Reiss and Thomas (2007). We follow Weller et al. (2012) and 

set 𝑢= 0.95. The 𝜒(0.95) parameter for two time series can be generally interpreted as the 

probability that one time series  observation is extreme given that the corresponding observation 

in the other time series is extreme (Coles et al., 1999). 

2.2.3 Summary Statistics 

As in the temporal alignment analysis, we use 2006 to 2015 daily aggregations of hourly 

observations from USCRN stations to validate summary precipitation statistics. We calculate and 

compare 5 summary precipitation statistics before and after adjustment of the daily USCRN time 

series: average precipitation amount, intensity, frequency, extremes, and lag 1 temporal 

autocorrelation (rlag1). For instance, under the AM’ midnight adjustment scenario, we compare 

the average intensity of a specific station’s AM time series with that of its corresponding 

midnight time series both before and after the AM time series is adjusted. Average precipitation 
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amount is the mean precipitation value over all wet and dry days. Precipitation intensity is the 

mean precipitation value over wet days only. Frequency is the total number of wet days over the 

2006 to 2015 time period. Our extreme statistic is defined as the mean of observed values > the 

95th percentile.      

2.2.4 Spatiotemporal Coherence   

A reliable analysis of daily precipitation spatiotemporal coherence requires a sufficient 

station density. Because the Mid-Atlantic USCRN stations are spatially sparse, we instead use 

daily precipitation observations from the denser Global Historical Climatology Network-Daily 

(GHCN-D; Menne et al., 2012) for the spatiotemporal coherence analysis (Figure 2b). To match 

the radar era of the NLDAS-2 dataset (see Section 2.1.3), we conduct the analysis over the 1997 

to 2015 time period.  

The  spatiotemporal coherence validation also requires stations that have accurate time of 

observation metadata for each daily observation and maintain a relatively consistent time of 

observation from 1997 to 2015. To meet these criteria, we apply a strict series of requirement 

filters to the GHCN-D stations. First, we require each GHCN-D station to have at least 10 years 

of observations in each month over the 19-year 1997 to 2015 time period. A total of 1361 Mid-

Atlantic GHCN-D stations meet this requirement. Second, because time of observation metadata 

can sometimes be unreliable (DeGaetano, 1999, 2000), we quality assure each station’s metadata 

using the hourly NLDAS-2 data from the grid cell closest to each station location. For each 

station and year, we create 24 NLDAS-2 daily time series corresponding to each time of 
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observation hour. We then predict the time of observation for a specific station year by finding 

the daily NLDAS-2 time series that correlates most closely with the station’s observations for the 

year. For each station, we compare the predicted times of observation with those in the station’s 

metadata and only keep those stations whose mean absolute error between predicted and 

recorded times of observation is d 4 hours. A total of 1208 GHCN-D stations meet our time of 

observation quality assurance requirement. For missing time of observation metadata (10.3% of 

remaining daily observations), we use the nearest non-missing time of observation in a specific 

station’s record. Next, to better ensure time of observation consistency at each station, we drop 

93 stations whose time of observation changes by more than 4 hours over the 1997 to 2015 time 

period. In a final step, we classify remaining stations (n=1115) as AM, PM, midnight or “other” 

observers based on each station’s most frequent time of observation. To maintain consistency 

with USCRN-based analyses, we limit the AM classification to those stations with an exact 0700 

LT time of observation (n=510 stations) and the midnight classification to stations with an exact 

2400 LT time of observation (n=223 stations). Due to a limited number of stations with an exact 

1700 LT time of observation (n=28 stations), we expand the PM classification to stations with a 

time of observation between 1600 and 2000 LT (n=63 stations), which is the common 4-hour 

period used for PM classification in previous analyses (e.g. DeGaetano, 2000). This means that 

the PM classification has slightly greater time of observation variability than AM and midnight 

classifications, but the 4-hour classification window is necessary to ensure reliable quantification 

of spatiotemporal coherence. We classify all stations outside the AM, PM, and midnight 
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classifications as “other” (n=319) and remove them from the analysis. To establish a balanced 

number of observations in each classification, we only keep AM and midnight stations that are 

nearest neighbors to the 63 PM stations. In the end, this gives us 189 input stations for the 

spatiotemporal coherence validation, 63 in each time of observation classification (Figure 2b).  

Using the 189 GHCN-D stations, we quantify spatiotemporal coherence both in terms of 

the full distribution of precipitation values and extremes by calculating separate decorrelation 

lengths (x0) for r and 𝜒(0.95). The x0 metric is defined as the spatial distance at which the 

dependence parameter (r or 𝜒(0.95)) between pairs of station time series decays to a threshold 

value of 1/e (Briffa and Jones, 1993; Gervais et al., 2014; Osborn and Hulme, 1997). To quantify 

x0 for a set of stations, temporal r or 𝜒(0.95) is first calculated for all unique station pairs. 

Average r or 𝜒(0.95) is then plotted as a function of distance between station pairs and a 

nonlinear function is fit to the resulting decay curve to determine x0 (e.g. Figure 3). Although an 

exponential decay function is traditionally used in this regard (Briffa and Jones, 1993; Gervais et 

al., 2014; Osborn and Hulme, 1997), we use an exponential variogram model because we found 

it to produce much better fits (Figure 3). 

Using the x0 metric, we perform two separate spatiotemporal coherence validations for 

each adjustment method and scenario. We perform the validations for both r and 𝜒(0.95). In the 

first validation, we ask: how does the adjustment change the spatiotemporal coherence of stations 

with the different observation times in the scenario? For instance, in the AM’ midnight 

scenario, what is the x0 value for AM-midnight station pairs both before and after adjustment of 
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the AM stations? We assess whether the adjustment-driven change in x0 is an improvement by 

calculating the percent error in x0 for AM-midnight station pairs relative to the x0 values for 

midnight-midnight station pairs before and after adjustment of the AM stations. We refer to this 

validation as the “target x0” validation, because it examines the ability of the adjustment to 

match the spatiotemporal coherence of stations with the target time of observation. In the second 

validation, we ask: how does the adjustment change the spatiotemporal coherence of stations 

with the original observation time in the scenario? For instance, in the AM’ midnight scenario, 

what is the x0 value for AM-AM station pairs both before and after adjustment of the AM 

stations? An effective adjustment should have little impact on the spatiotemporal coherence of 

stations with the original time of observation. We refer to this validation as the “original x0” 

validation, because it examines the ability of the adjustment to maintain the spatiotemporal 

coherence of stations with the original time of observation.   

3 Results and Discussion 

3.1 Temporal Alignment 

Before adjustment, the different  USCRN daily precipitation aggregations displayed 

various degrees of temporal alignment (Figure 4). Unadjusted AM’ midnight had the weakest 

correlation (r = 0.37; Figure 4a) while correlations for PM’ midnight (r = 0.78) and PM’ AM 

(r = 0.70)  were stronger (Figures 4b and 4c). These differences can be attributed to the number 

of hours of overlap between the different 24-hour time periods: AM (i.e. 0700 LT) and midnight 
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observations only have 7 hours of overlap on a specific date compared to 17 hours for PM (i.e. 

1700 LT) and midnight, and 14 hours for PM and AM (Figure 1).   

The ability of the different adjustment methods to improve temporal alignment was also 

variable. The NLDAS-2 hourly method produced the greatest and most consistent increases in 

temporal alignment across the three adjustment scenarios (Figure 4). With the NLDAS-2 hourly 

adjustment, temporal alignment parameters for AM’ midnight, PM’ midnight, and PM’ AM 

all improved to similar, strong values despite pre-adjustment differences (Figure 4). While not to 

the extent of the NLDAS-2 hourly method, the uniform and shift adjustment methods also 

produced a clear improvement in AM’ midnight temporal alignment (Figure 4a). However, the 

uniform and shift adjustments produced inconsistent improvements in the temporal alignment of 

the other adjustment scenarios and, in some cases, were detrimental (Figures 4b and 4c). Most 

notably, the uniform method weakened frequency temporal alignment for PM’ midnight 

(unadjusted HSS = 0.72; uniform adjusted HSS = 0.64; Figure 4b) and the shift adjustment 

greatly weakened the overall temporal alignment of PM’ AM (Figure 4c). Unlike 

AM’ midnight, where a simple shift increases the number of hours of overlap on a specific date, 

a shift of PM’ AM actually decreases the number of hours of overlap from 14 to 10 (Figure 1). 

3.2 Summary Statistics 

Summary statistics for the three different USCRN daily precipitation aggregations were 

nearly identical before adjustment (Figure 4). Absolute value percent error in average amount, 

intensity, frequency, and extremes was d 1.15% for all three adjustment scenarios (Figure 4) and 
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absolute percent error in rlag1 was < 10%. The shift adjustment also had little impact on 

precipitation statistics (Figure 4). 

 The uniform adjustment produced large changes in observed summary statistics (Figures 

4 and 5). Across all scenarios, the uniform adjustment artificially decreased precipitation 

intensity (percent error = -33 to -34%) and extremes (percent error = -21 to -25%), and increased 

precipitation frequency (percent error = +50 to +51%) and temporal autocorrelation (rlag1 percent 

error = +282 to +368%; Figure 5). In absolute terms, the exceedingly large percent increases in 

temporal autocorrelation correspond to a +0.31 to +0.41 overestimation of rlag1 . For all times of 

observation, mean rlag1 ranges from 0.11 to 0.12 for unadjusted time series whereas mean rlag1  

for uniform-adjusted time series ranges from 0.43 to 0.53. The changes in precipitation statistics 

introduced by the uniform method are due to the reapportioning of daily precipitation totals. 

Because the uniform method assumes an equal distribution of precipitation across every hour, it 

will always reapportion a single day total to two days. This doesn’t change the average 

precipitation amount, but, as evident in the results here, it will increase frequency and temporal 

autocorrelation, and decrease intensity and extremes (Figures 4 and 5).  

While not as large as the uniform adjustment errors, the NLDAS-2 hourly adjustment 

also consistently decreased precipitation intensity (percent error = -15 to -17%) and increased 

precipitation frequency (percent error = +18 to +21%; Figure 5). This is likely due to a scale 

mismatch where the hourly NLDAS-2 data conform the local point-based station observations to 

the hourly precipitation spatial patterns of the ~12-km NLDAS-2 grid. In grid-based datasets like 
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NLDAS-2, grid cell precipitation values are typically areal averages. As such, compared to 

point-based observations, hourly spatiotemporal variability will tend to be smoother with 

decreased intensity and increased frequency (e.g. Tustison et al., 2001). At USCRN station 

locations, 2006 to 2015 average NLDAS-2 hourly precipitation intensity is -34% less than 

station-observed intensity, and NLDAS-2 hourly frequency is +44% greater than station-

observed frequency. While not to the extent of the uniform method, this will cause NLDAS-2 to 

often reapportion single day totals to two days and decrease daily intensity and increase daily 

frequency.     

3.3 Spatiotemporal Coherence 

Before adjustment, pairs of GHCN-D stations with different times of observations 

displayed negative biases in interstation spatiotemporal coherence across all adjustment 

scenarios (Figure 5). Percent errors in target x0 for correlation (x0r) and target x0 for tail 

dependence (x0𝜒) were most negative for unadjusted AM-midnight station pairs (target x0r = -

90%; target x0𝜒 = -100%; Figure 5). The percent error of -100% for target x0𝜒 indicates that the 

average 𝜒(0.95)  tail dependence between unadjusted AM-midnight station pairs never exceeded 

the 1/e decorrelation threshold at any distance. Percent errors for target x0r and x0𝜒 for 

unadjusted PM-midnight and PM-AM station pairs were of smaller magnitude, but still 

consistently negative (target x0r = -15 to -24%; target x0𝜒 = -27 to -44%; Figures 5b and 5c).   

The NLDAS-2 hourly adjustment provided the greatest and most consistent improvement 

in target x0r and x0𝜒 percent error (Figures 4 and 5). After application of the NLDAS-2 
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adjustment, target x0r and x0𝜒 absolute value percent error fell below 3% across all three 

adjustment scenarios (Figure 4). However, the NLDAS-2 adjustment did produce a +5 to +11% 

error in original x0r and x0𝜒 (Figure 5) suggesting that the adjustment has the potential to 

artificially increase interstation spatiotemporal coherence for stations with the original time of 

observation. We examine this issue in more detail in a seasonal analysis (Section 3.4). 

The uniform adjustment also notably reduced percent error in target x0 spatiotemporal 

coherence metrics, but exhibited several keys differences from the NLDAS-2 hourly adjustment 

(Figures 4 and 5). The ability of the uniform adjustment to reduce target x0𝜒 percent error was 

not as substantial as the NLDAS-2 hourly adjustment. With the uniform adjustment, target x0𝜒 

percent error remained consistently negative ranging from -18 to -26% across the three 

adjustment scenarios (Figure 5). The uniform adjustment also produced larger magnitude 

positive percent error in original x0r than NLDAS-2, but did not produce a consistent positive 

bias in original x0𝜒 (Figure 5). For stations with the original time of observation, this suggests 

that the uniform adjustment has a greater potential to artificially increase spatiotemporal 

coherence with respect to interstation correlation, but not with respect to extreme events.  

In contrast to the NLDAS-2 and uniform adjustments, shift adjustment improvements to 

target x0 spatiotemporal coherence were limited to the AM’ midnight adjustment scenario. For 

this scenario, the shift adjustment reduced percent error for target x0𝑟 and x0𝜒 to -13% and -

24%, respectively. The shift adjustment had no effect under the PM’ midnight scenario because 

it is not applied when adjusting PM to midnight (Figures 4b and 5b). Similar to the temporal 
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alignment results, the shift adjustment increased the percent error in target x0𝑟 and x0𝜒 for the 

PM’ AM scenario (Figures 4c and 5c). Nonetheless, one advantage of the shift adjustment over 

the uniform and NLDAS-2 adjustments was that it had very little impact on the spatiotemporal 

coherence of stations with the original time of observation (x0𝑟 and x0𝜒 percent error ≅ 0%; 

Figure 5). This is because the shift adjustment does not partially reapportion daily totals like the 

other adjustment methods. Similarly, for unadjusted observations, original  x0r and x0x percent 

errors were all 0% because no adjustment is yet applied to the stations with the original time of 

observation (Figure 5).    

3.4 Seasonal Analysis 

 Here, we examine the validation metrics in Figures 4 and 5 from a seasonal perspective. 

We again assess the adjustments in three main areas: temporal alignment (Figure 6), summary 

precipitation statistics (Figures 7 and S1), and spatiotemporal coherence (Figures 8 and 9). A 

seasonal analysis is important to determine whether the performance of the adjustments varies by 

the seasonal precipitation regime, most notably the organized synoptic scale precipitation 

systems of winter compared to the generally smaller scale and more spatially random convective 

precipitation patterns of summer (Osborn and Hulme 1997; Hofstra and New 2009; Hutchinson 

and McKenney 2009; Gervais et al. 2014).  

 Monthly temporal alignment metrics further support the result that the NLDAS-2 hourly 

adjustment is the best performing adjustment with respect to temporal alignment (Figure 6). 

Across all months and adjustment scenarios, the NLDAS-2 adjustment improved temporal 
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alignment more than the uniform and shift adjustments (Figure 6). The closest a different 

adjustment came to matching NLDAS-2 performance was for the temporal alignment of summer 

precipitation occurrence under the AM’ midnight adjustment scenario; July HSS values for the 

NLDAS-2 and shift adjustments were 0.81 and 0.80, respectively (Figure 6g). Surprisingly, 

under the AM’ midnight scenario, monthly temporal alignment performance of the simpler shift 

method was near or better than the uniform adjustment (Figures 6a, 6d, 6g, and 6j), particularly 

for precipitation occurrence (Figure 6g). 

Seasonal variability in temporal alignment was evident in all adjustment scenarios, but 

the PM’ midnight scenario had the most distinctive winter versus summer seasonal pattern 

(Figure 6). Here, unadjusted (shift = unadjusted for this scenario) and uniform adjusted 

PM’ midnight data generally exhibited better temporal alignment between the two times of 

observation in winter than in summer (Figures 6b, 6e, 6h, and 6k). This is most likely indicative 

of the stronger diurnal variation of summer precipitation. During the summer, precipitation in the 

validation region is more frequent during the late afternoon (Dai et al., 1999). Because this late 

afternoon timing closely coincides with the PM 1700 LT time of observation, it likely weakens 

the temporal alignment of the PM and midnight observations. Overall, even with the weakened 

temporal alignment of summer, the unadjusted PM and midnight observations displayed 

temporal alignment that was similar to or even better than their temporal alignment with a 

uniform adjustment (Figures 6b, 6e, 6h, and 6k). Under the PM’ midnight scenario, correlation 
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was the only temporal alignment metric in which the uniform adjustment noticeably 

outperformed unadjusted data across all months (Figure 6b). 

Seasonal variability in validation metrics for summary statistics was similar across the 

three adjustment scenarios. As such, we only present monthly results for the AM’ midnight 

adjustment scenario (Figure 7). Results for the other adjustment scenarios can be found in Figure 

S1. The seasonal summary statistics results further confirm that the uniform adjustment produces 

a significant positive bias in rlag1  due to its reapportioning of all single-day precipitation totals to 

two days (Figure 7e). Out of all the validation metrics for summary statistics, percent error in 

rlag1  for the uniform adjustment had the largest season swings ranging from +752% in January  

to +291% in October (Figure 7e). Because the monthly range of  rlag1 for uniform adjusted data 

(0.38 to 0.45) is so much higher than unadjusted data (0.06 to 0.15), these large seasonal changes 

correspond to only small seasonal changes in rlag1 error when viewed in absolute terms. For 

instance, the +752% in January corresponds to a  +0.32 overestimation of rlag1 whereas the 

+291% error in October corresponds to +0.30 overestimation of rlag1, a difference of +0.02. 

The monthly summary statistics results again indicate that the uniform and NLDAS-2 

hourly adjustments produce non-trivial artificial changes in intensity (Figure 7b) and frequency 

(Figure 7c), and that the uniform adjustment also produces substantial artificial changes in 

extremes (Figure 7d). Compared to the uniform adjustment, the intensity and frequency errors 

introduced by the NLDAS-2 adjustment exhibited a more discernable seasonal cycle (Figures 7b 

and 7c). The NLDAS-2 adjustment intensity error reached its most negative value in mid-to-late 

This article is protected by copyright. All rights reserved.



page 22 of 34 

summer (July to September percent error = -19 to -20%) and least negative value in mid-to-late 

winter (January to March percent error = -15%; Figure 7b). Correspondingly, NLDAS-2 

adjustment frequency error reached its most positive value in mid-to-late summer (July to 

September percent error = +24 to +25%) and least positive value in mid-to-late winter (January 

to March percent error = +17 to +18%; Figure 7c). As discussed in Section 3.2, this is most 

likely a scale mismatch between NLDAS-2 gridded data and local point-based station 

observations that becomes more accentuated by the smaller scale spatial patterns of summer 

convective precipitation. 

Monthly x0 spatiotemporal coherence metrics for unadjusted AM-AM, PM-PM, and 

midnight-midnight station pairs clearly illustrate the validation region’s yearly seasonal change 

from a winter to summer precipitation regime (Figure 8). Both x0𝑟 and x0𝜒 reached their highest 

values in winter months and their lowest values in summer months (Figure 8). With these distinct 

seasonal changes in the spatiotemporal coherence of the precipitation regime (Figure 8), seasonal 

variability was also evident in the spatiotemporal coherence validation metrics (Figure 9). 

Although the NLDAS-2 adjustment was the only adjustment to produce percent errors in both 

target x𝑟 and x0𝜒 that hovered near 0% across all months and adjustment scenarios (Figures 9a-

9c and 9g-9i), NLDAS-2 adjustment percent errors in original x𝑟 and x0𝜒 were generally 

positive and had a strong seasonal pattern (Figures 9d-9f and 9j-9l). This provides further 

evidence that the NLDAS-2 hourly adjustment has the potential to artificially increase 

interstation spatiotemporal coherence for stations with the original time of observation, 
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particularly during non-winter months when positive percent errors are greater for both x0𝑟 and 

x0𝜒 and can reach values of +10 to +22% (Figures 9d-9f and 9j-9l). Analogous to the NLDAS-2 

adjustment’s errors in frequency and intensity, this is likely due to a scale discrepancy between 

the NLDAS-2 dataset and station observations. The smoother spatial variability of the NLDAS-2 

grid cells will tend to increase the spatial coherence relative to that of point-based station 

observations (e.g. Maraun 2013). For instance, at a daily timestep, x0𝑟 for the NLDAS-2 dataset 

itself is 506-km, which is +71% greater than the x0𝑟 for AM-AM station pairs (Figure 3). 

Similar to general spatiotemporal coherence analysis (Section 3.3; Figures 4 and 5), 

seasonal spatiotemporal results for the uniform adjustment had several key similarities and 

differences relative to the NLDAS-2 adjustment. As with the NLDAS-2 adjustment, the uniform 

adjustment percent error for target x0𝑟 was near 0% across all months and adjustments scenarios 

(Figures 9a-9c). However, percent error for original x0𝑟 was even more positive and had a strong 

seasonal pattern with higher error values of +18 to +29% during the summer (Figures 9d-9f). 

Although the uniform adjustment’s percent error in  original x0𝜒 had some seasonal variability, it 

was not as consistently positive as the NLDAS-2 adjustment (Figures 9j-9l). For stations with the 

original time of observation, this again suggests that the uniform adjustment has less potential to 

add a consistent positive bias to the spatiotemporal coherence of extreme events. However, 

unlike the NLDAS-2 adjustment, the uniform adjustment had a consistent negative bias for target 

x0𝜒 across all months that was enhanced during the summer for the PM’ midnight (Figure 9h) 

and PM’ AM scenarios (Figure 9i).  
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In contrast to the other adjustments, shift adjustment improvements to target 

spatiotemporal coherence were limited to the AM’ midnight scenario (Figures 9a and 9g). For 

PM’ midnight the shift adjustment was not applicable (i.e. shift = unadjusted; Figures 9b and 

9h) and under the PM’ AM scenario it was detrimental across all months (Figures 9c and 9i). 

Although shift adjustment percent errors were consistently larger for target x0𝑟 and x0𝜒 than the 

other adjustments for the AM’ midnight scenario (Figures 9a and 9g), it still provided a clear 

improvement over unadjusted data across all months and had the added benefit of having 

negligible impacts on original x0𝑟 and x0𝜒 (Figures 9d and 9j). 

4 Conclusions 

Time of observation adjustments for daily precipitation are important for improving 

interstation data compatibility, but they are not without drawbacks. Based on the results shown 

here and those from previous analyses (Holder et al., 2006; Kim and Pachepsky, 2010), we make 

the following conclusions: (1) Time of observation adjustments can clearly improve temporal 

alignment, especially between AM and midnight observations (Figures 4a, 6a, 6d, 6g, 6j). (2) 

Although they improve temporal alignment, adjustment methods that reapportion daily 

precipitation observations have the potential to artificially increase precipitation frequency and 

temporal autocorrelation, and decrease average intensity and extremes (Figures 5 and 7). (3) 

Adjustment methods that reapportion daily precipitation observations also have the potential to 
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artificially increase the interstation spatiotemporal coherence of the stations being adjusted 

(Figures 5, 9d-f, 9j-l).  

The issues introduced by the time of observation adjustments complicate the selection of 

an appropriate adjustment method. While much will depend on the specific application, we make 

several suggestions. First, if observations are dominated by a certain time of observation 

category (e.g. AM), we recommend only adjusting observations that are not in the dominant 

category unless a specific application requires a different observation time. This limits the 

number of observations that have to be adjusted and helps to avoid the introduction of 

widespread biases. Second, we recommend that the uniform method not be used as a time of 

observation adjustment. Although the uniform method has an ability to improve certain aspects 

of temporal alignment (Figures 4 and 6) and spatiotemporal coherence (Figures 5 and 9), 

especially with respect to the AM’ midnight adjustment scenario, it can be detrimental to the 

temporal alignment of precipitation occurrence (Figures 4 and Figures 6h-i), and also 

substantially bias precipitation statistics (Figures 5 and 7) and the spatiotemporal coherence of 

the stations being adjusted (Figures 5 and Figures 9d-f). An appropriate alternative is to use the 

shift adjustment, but only in adjustment scenarios where a one-day shift increases the number of 

hours of overlap between the two times of observations. In such scenarios, the shift adjustment 

can improve temporal alignment similar to the uniform adjustment (Figures 4a, 6a, 6d, 6g, 6j), 

but without biasing precipitation statistics (Figures 5a and 7) and spatiotemporal coherence 

(Figures 5a, 9d, 9j). A simple method to determine the appropriateness of the shift adjustment for 

This article is protected by copyright. All rights reserved.



page 26 of 34 

two times of observation is to calculate their difference in hours. If the difference is > 12 hours, 

then a simple shift in one of the time series will likely improve temporal alignment because it 

increases the number of hours of overlap between the two times of observation. For instance, 

because the hour difference of the AM’ midnight scenario (0700 LT vs. 2400 LT) is 17 hours 

(Figure 1a), a 1-day forward shift of the AM time series or a 1-day backward shift of the 

midnight time series improves temporal alignment (Figures 4a, 6a, 6d, 6g, 6j). In contrast, 

because the hour difference of the PM’ AM scenario (1700 LT vs. 0700 LT) is 10 hours (Figure 

1c), a shift adjustment decreases the number of hours of overlap and is not appropriate (Figures 

4c, 6c, 6f, 6i, 6l).           

 Before applying hourly adjustments based on gridded hourly precipitation datasets like 

NLDAS-2, we recommend that possible spatial scale discrepancies between the gridded data and 

point-based station observations be carefully assessed. While the NLDAS-2 hourly adjustment 

has the ability to improve temporal alignment (Figures 4 and 6), and aspects of spatiotemporal 

coherence (Figures 5, 9a-9c, 9g-9i) more than any other adjustment, scale discrepancies can 

artificially modify frequency and intensity (Figure 5), and bias the spatiotemporal coherence of 

the stations being adjusted (Figures 5, 9d-9f, 9j-9l). The temporal consistency of the spatial scale 

discrepancies in the gridded products also need to be examined. NLDAS-2 uses two main data 

sources to produce hourly precipitation estimates: station-based hourly observations from 1979 

to July 1996 and hourly radar observations from July 1996 to present (Ferguson and Mocko 

2017). Although we focused our analyses on the radar era, we did find evidence that errors in 
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spatiotemporal coherence introduced by NLDAS-2 were modified by the switch to radar in 1996. 

For instance, under the AM’ midnight adjustment scenario, average percent error in original x0𝑟 

was +16% before 1996, but then abruptly dropped to an average of 6% after radar was 

introduced (Figure S2). As a result, if the NLDAS-2 hourly adjustment is used across the time 

period of the switch to radar, it will likely introduce temporal inconsistencies in the 

spatiotemporal coherence of the precipitation field represented by the adjusted station 

observations. 

It is important to note that while time of observation disparities can cause significant 

temporal alignment issues with daily precipitation, they become less of an issue at coarser 

temporal resolutions. For example, average temporal correlation between unadjusted AM and 

midnight USCRN time series increases from 0.37 for daily precipitation to 0.88 for pentad 

precipitation (Figure S3). The noted drawbacks of the adjustment methods also diminish with 

coarser temporal resolutions. When changing from a daily to pentad resolution under the 

AM’ midnight adjustment scenario, coinciding percent errors in frequency and intensity caused 

by the uniform adjustment decrease in magnitude from +51% and -34% to +6% and -5%, 

respectively (Figure S4). Therefore, if  coarser temporal resolutions are appropriate for the 

application, degradation of the temporal resolution can be an effective alternative for minimizing 

the introduction of biases or eliminating the need for time of observation adjustments altogether. 

  In the end, time of observation adjustments can be essential or questionable depending 

on the mix of stations and application of interest. Without adjustment, a mix of AM and midnight 
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stations will significantly decrease the spatiotemporal coherence of the daily precipitation field 

both with respect to the entire distribution of precipitation observations and extreme events 

(Figures 5a, 9a, 9g). However, in situations where temporal misalignment is not as significant 

(e.g. PM’ midnight scenario; Figure 4b), the introduction of biases in precipitation frequency 

and intensity could be more detrimental than minimal temporal misalignment. Any adjustment-

introduced increase in the spatiotemporal coherence of extremes (Figures 5 and 9j-9l) will also 

exaggerate the concurrent spatial coverage and impact of specific events. If considered 

necessary, all daily precipitation time of observation adjustments need to be applied with a full 

understanding of not only improvements to temporal alignment, but also impacts to precipitation 

statistics and the spatiotemporal coherence of the precipitation field.  
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6 Supporting information 

Figure S1: Validation results for summary precipitation statistics by month for different time of 

observation adjustment methods and scenarios: percent error in average amount for (a) AM 

adjusted to midnight-to-midnight daily precipitation (AM’ midnight), (b) PM adjusted to 

midnight-to-midnight daily precipitation (PM’ midnight), and (c) PM adjusted to AM daily 

precipitation (PM’ AM); percent error in average intensity for (d) AM’ midnight, (e) 

PM’ midnight, and (f) PM’ AM; percent error in frequency for (g) AM’ midnight, (h) 

PM’ midnight, and (i) PM’ AM; percent error in extremes (mean of values > the 95th 

percentile) for (j) AM’ midnight, (k) PM’ midnight, and (l) PM’ AM; and percent error in lag 

1 temporal autocorrelation (rlag1) for (m) AM’ midnight, (n) PM’ midnight, and (o) PM’ AM. 

Figure S2: Percent error in original Pearson correlation coefficient (r) decorrelation length (x0r) 

by year from 1979 to 2015 for the NLDAS-2 adjustment method and the AM adjusted to 

midnight-to-midnight daily precipitation adjustment scenario. Original x0 error metric is defined 

in Section 2.2.4. 

Figure S3: Temporal correlation between AM and midnight-to-midnight U.S. Climate Reference 

Network (USCRN) precipitation time series as a function of temporal resolution. Pearson 

correlation coefficient (r) is shown for both unadjusted and uniform adjusted AM data. 

Figure S4: Percent error in frequency and intensity introduced by the uniform adjustment as a 

function of temporal resolution for the AM to midnight adjustment scenario.  
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